首页 -> 2007年第6期

数学概念教学的新“概念”

作者:王建荣




  新课程理念指出:高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。概念教学作为数学课堂教学的核心,必须贯彻新的教学理念,使学生既参与有意义的,鲜活的生成数学概念的活动,又深刻理解形式化的概念本质,这是数学概念教学的新“概念”。本文就如何在新课程理念下进行数学概念教学谈一点想法,共大家参考。
  
  一、 从引入目的开始
  
  要使学生真正理解某个数学概念,必须引导学生明确引入概念的原因,没有这个概念行不行?这个概念是用来解决什么问题的?只有让学生明确了这个概念引入的目的,才能调动学生的学习积极性。如在学习函数单调性的概念之前,学生已经知道,正比例函数和反比例函数有变量y随变量x的增大而同时增大或减小的这种依赖关系,这个结论的依据是这两个函数的图像,但是,除了基本初等函数外,大多数函数的图像并不容易作出,有的甚至根本无法作出,因此数学中需要一个形式化的“代数定义,来刻画函数的这种性质,进一步分析怎样用代数的方法把这种关系形式化,使学生理解单调性概念形式化的必要性和合理性。
  
  二、 从感性认识入手
  
  概念教学遵循从具体到抽象的原则,采取“归纳式”,让学生经历从典型、丰富的具体事例中概括概念的本质的活动,而不是给出概念的定义,举例说明,练习巩固。正如教材主编寄语中所说,如果有人觉得某个概念不自然,是强加于人的,那么只要想一下它的背景,它的形成过程,它的应用,以及与其他概念的联系,你就会发现它实际上是水到渠成,浑然天成的产物,不仅合情合理,甚至很有人情味。
  例如在学习数列的概念时,先是同学们打开课本看引言,因为引言所讲的故事既有趣,又包含智慧,既是学习兴趣的生长点,也是引发学习内容的催化剂。在阅读的基础上把其中的数学问题提炼出来,即国际象棋发明人要求国王每格所放的麦粒数是1,2,22,23,……263。这些数构成了一列数;再让学生想一想,一张纸可以重复对折多少次,请同学们随便拿一张纸试试,这时纸的面积(设纸原来的面积为1面积单位)为1,1/2,1/4,1/8……1/256……组成了一列数;然后教师再举一些身边的数列例子,如班级同学的学号1,2,3,4……52组成一列数;某放射性元素每经过一年,其剩余量是原来的84%,则每年的剩余量1,0.84,0.842,0.843、……也构成了列数,再从以上4列数中找出共同特征,抽象出数列的概念。
  
  三、 从剖析关键字词入门
  
  一般来说,数学中的每一概念在下定义时,总是用最简洁的语言、符号表述,给出概念后,如果能引导学生对概念进行认真的剖析,对理解概念将会起到十分重要的作用。
  
  1.对定义中的关键字和句子进行剖析
  数学概念都是用文字叙述的,把定义中的关键字、词和句子的关系分析透彻,辨别清楚有的简直需要“咬文嚼字”。如并集的定义是“由所有属于A或者属于B的元素组成的集合”,这个定义描述的是两个集合之间的关系,而联系这两个集合的关健的字、词、句是什么?显然,是“或者”这一词。或者这一词在此包含下列三种含义:(1)属于A而不属于B;(2)属子B而不属于A;(3)既属于A又属子B,通过这样的分析,再利用文恩图加以说明,学生对并集的概念就容易理解了。
  
  2.对定义的层次要点的剖析
  分清层次,明确要点是揭示概念本质的一种方法,如学习了双曲线的概念后可以对定义作如下的层次分析,①到两定点的距离之差:②差的绝对值为常数;③该常数小于两定点的距离。并思考分析去掉绝对值时,轨迹是什么?常数不小于两定点的距离时,轨迹又是什么?
  
  四、 从正反的鉴别中深化
  
  适当应用反例,罗列一些似是而非、容易产生错误的对象让学生辨析,是促进学生认识概念的本质、确定概念的外延的有效手段。例如,函数的概念对于初学者来说是比较难理解的,利用反例可加深学生对函数的理解。举例如下:
  下列图形中,不可能是函数y=f(x)的图像是()
  
  通过观察、比较,同学们认识到:对于x在某个范围内的每一个确定的值,按照某种对应法则,变量y都有唯一确定的值和它对应,这才是构成函数关系的本质。所以只能选(D)
  又如,奇(偶)函数是函数中重要的概念,课本中的定义正确简练,但是在新授或高三复习时,发现有些学生对奇(偶)函数的内涵及判断方法没有完整领会,直接影响解题的正确率。原因之一是定义中由于没有突出函数的定义域在研究函数的奇偶性中的作用,因而容易给人造成错觉,以为只要形式上有f(-x)=-f(x)或f(-x)=f(x),f(x)就是奇函数或偶函数了。这时可以举例,判断函数f(x)=x2,x(0,2)的奇偶性,使学生进一步理解函数的定义域在判断函数奇偶性中作用。
  
  五、 从限制中加深理解
  
  对概念的理解产生偏差的常见病是“忽略条件”。其实很多数学的概念是有条件的,如果忽略了这些条件,就会曲解题意,造成错误。如直线的截距式方程有一类直线不能用这种形式来表示,通过对问题:“求过点(3,2),且在两条坐标轴上截距相等的直线方程的求解分析加深对截距式方程概念的理解。
  
  六、 从概念结构中同化
  
  1.在概念的系统学习中学习概念,使学生有机会从不同的角度认识概念,建立“概念的多元联系表示”,这不仅便于发挥知识的结构功能,使概念具有“生长活力”,有益于知识的获取、保持和应用,而且对发展学生的概括能力有特殊的意义。
  如学习了数列的概念以后,可以与函数的概念作一比较。
  
  2.在概念学习的过程中,重视概念与概念之间的联系与区别,既可拓宽学生思路,又可逐步形成学生关于事物与事物之间是相互联系的辩证唯物观点。概念教学中,用类比的方法,将概念的本质属性,用最集中、最明确的形式显现出来,使人一目了然,澄清对概念的模糊认识,辨别容易产生混淆的概念,更正确地理解和应用概念。如在学习等差数列的基础上学习等比数列,可以用类比的方法加以比较分析,进行知识迁移,在此基础上,可以由学生试着对“等和数列”与“等积数列”下定义和研究它们的性质。
  
  七、 从概念应用中巩固
  
  紧扣数学概念的本质属性,配备具有引导功能的例题组织教学,有助于强化概念间的联系,巩固概念网络,加深理解概念。
  下面是两个用概念来解题的例子
  问题1:在△ABC中,AB=6,AC+BC=10,求顶点C轨迹方程。
  问题2:AB为过抛物线y2=2px焦点F的弦,求证:以AB为直径的圆必与准线相切。
  搞好数学概念的教学,使学生透彻地牢固地掌握数学概念是提高数学教学质量的关键所在,作为一个数学教师首先应该认识到数学概念教学同加强数学基础知识教学,发展学生数学的应用意识和创新意识,以及培养学生逻辑思维和空间想象能力的关系,在思想上重视它,这样使我们在教学时会目的明确,方法对头,既不会造成为概念而教学,也不会在数学教学时顾此失彼。当然,要依据概念的难度、形式等恰当的选择概念教学的过程。
  
  (责任编辑 刘永庆)