在自然科学中,从激光物理学、量子混沌和气象学直到化学中的分子建模和生物学中对细胞生长的计算机辅助模拟,非线性复杂系统已经成为一种成功的求解问题方式。另一方面,社会科学也认识到,人类面临的主要问题也是全球性的、复杂的和非线性的。生态、经济或政治系统中的局部性变化,都可能引起一场全球性危机。线性的思维方式以及把整体仅仅看作其部分之和的观点,显然已经过时了。认为甚至我们的意识也受复杂系统非线性动力学所支配这种思想,已成为当代科学和公众兴趣中最激动人心的课题之一。如果这个计算神经科学的命题是正确的,那么我们的确就获得了一种强有力的数学策略,使我们得以处理自然科学、社会科学和人文学科的跨学科问题。
在这些跨学科的应用中,成功的原因何在?本书表明,非线性复杂系统理论不可能还原成特殊的物理学的自然定律,尽管它的数学原理是在物理学中被发现的,并首先在物理学中得到成功应用。因此,它不是某种传统的“物理主义”,不是用类似的结构定律来解释激光、生态群体或我们的大脑的动力学。它是一种跨学科方法论,以此来解释复杂系统中微观元素的非线性相互作用造成的某些宏观现象。光波、流体、云彩、化学波、植物、动物、群体、市场和脑细胞集合体,都可以形成以序参量为标志的宏观现象。它们不能还原到复杂系统的原子、分子、细胞、机体等微观水平上。事实上,它们代表了真实的宏观现象的属性,例如场电势、社会或经济力量、情感乃至思想。有谁会否认情感和思想能够改变世界呢?
在历史上,社会科学和人文学概念往往受到物理理论的影响。在机械论时代,托马斯·霍布斯把国家描述成一台机器(“利维坦”),其公民就是机器中的嵌齿轮。在拉美特利看来,人的灵魂归结为自动机的齿轮传动装置。亚当·斯密用类似于牛顿的万有引力的“看不见的”力来解释市场机制。经典力学中,在牛顿或哈密顿运动方程意义上,因果关系是确定论的。保守系统以时间可逆(即对称性或不变性)和能量守恒为特征。天体力学和无摩擦钟摆是著名的例子。耗散系统是不可逆的,举例来说就像没有摩擦项的牛顿力。
而且,大自然原则上被看作一个巨大的确定论的保守系统,一旦确切知道了它的起始状态,就可以预测其未来或追溯过去的每一时刻的因果事件(拉普拉斯妖)。亨利·彭加勒则认识到,天体力学并非是一台可以透彻计算的机械钟,甚至在局限于保守性和确定论情况下亦如此。所有的行星、恒星和天体之间的因果相互作用,在其相互影响可以导致混沌轨迹的意义上,都是非线性的(例如三体问题)。在彭加勒的发现之后,几乎过了60年,A.N.科尔莫哥洛夫(1954)、V.
I.阿诺德(1963)和J. K.莫泽证明了所谓的KAM定理:经典力学的相空间轨迹既非完全规则的亦非完全无规的,但是它们十分敏感地依赖于对起始条件的选择。微小的涨落可能引起混沌的发展(“蝴蝶效应”)。
在这个世纪,量子力学成为物理学的基础理论。在薛定谔的波动力学中,量子世界被看作是保守的、线性的。用哈密顿算符描述的量子系统,取代了最初用哈密顿函数描述的量子化经典系统(例如对于电子和光子)。这些系统被假定是保守的,即非耗散的,对于时间逆转具有不变性,因而是满足能量守恒定律的。量子系统的状态用希尔伯特空间的矢量(波函数)来描述,希尔伯特空间的距离与其哈密顿算符的本征值相联系。量子状态的因果动力学由确定论的微分方程(薛定谔方程)所决定,该微分方程合乎叠加原理,因而是线性的,即如同经典光学的情形,该方程的解(波函数或态矢)是可以叠加的。量子力学的叠加或线性原理显示了组合系统的相关(“关联”)态,这在EPR实验(A·阿斯佩特,1981)中得到了高度确证。在一个关联的纯量子叠加态,一次观测仅可能得到不确定的本征值。量子系统的关联态和测量仪器相应仅可能有不确定的本征值。但是,实验室的测量仪器却显示出了确定的测量值。因此,线性的量子动力学难以解释该测量过程。
在玻尔、海森伯等人的哥本哈根诠释中,测量过程是用所谓的“波包坍缩”来解释的,即把叠加态分裂成两个独立的具有确定本征值的测量仪器和被测量子系统的状态。显然,我们必须将量子系统的线性动力学与测量的非线性作用加以区分。这个世界的这种非线性,有时被解释成人的意识的出现。尤金特·威格纳(1961)建议,薛定谔方程的线性对于有意识的观察者可能会失效,需要代之以某种非线性程序,使两个问题都可能得到解决。但是,威格纳的解释迫使我们相信,线性的量子叠加性仅仅在宇宙的那些出现了人的或类似人的意识的角落才会分裂成独立的部分。科学史上,拟人的或目的论的论证往往表明,科学解释在此软弱无力、难以奏效。因此,一些科学家如罗杰·彭罗斯提出,量子力学的线性动力学不适合于用意识的出现来解释宇宙的进化。他主张,至少是一个把线性量子力学和非线性的广义相对论统一起来的理论,才可能解释这个世界中的宏观系统的独立状态。一台测量仪器是一个宏观系统,测量过程是远离热平衡的不可逆过程。因此,一种解释只有在一种统一的非线性理论中才可能成功。甚至把薛定谔波动方程推广到量子场论,它也是非线性的。量子场论中,有所谓的二次量子化,场函数被场算符所代替。例如,对于两粒子势场,量子场方程包含有一个非线性项,它相应于基本粒子对的形成。一般地,量子场论中基本粒子的反应本质上是非线性现象。基本粒子的相互作用导致了其量子态只具有有限的寿命,从而破坏了时间的可逆性。因此,一般地,甚至量子世界自身同样既不是保守的也不是线性的。在系统理论中,复杂性不仅仅意味着非线性,还意味着大量的具有许多自由度的元素。所有的宏观系统,如石头或行星、云彩或流体、植物或动物、动物群体或人类社会,都是诸如原子、分子、细胞或有机体这样的组元构成的。具有大量自由度的复杂系统中的单个元素的行为,既无法被人预见,也无法被人追踪。对单个元素的确定论描述,必须代之以概率分布的演化。
第二章分析了“复杂系统和物质的进化”。前苏格拉底时期以来,自然哲学的一个基本问题是,有序是如何从复杂的、无规的和混沌的物质状态产生出来的。赫拉克利特认为,一种产生有序的能力(逻各斯)协调着无规的相互作用,创造出有序的物质状态。现代的热力学以数学的统计力学概念描述了有序的形成。我们区别两种形成有序的相变(自组织):保守自组织和耗散自组织。保守自组织意味着热力学平衡态的可逆结构的相变。典型的例子是雪花晶体的生长或使铁磁体系统退火到临界温度值时磁性的形成。保守自组织主要是造成低温低能的有序结构,这可以用波耳兹曼分布来描述。耗散自组织是远离热平衡的不可逆结构的相变。当耗散(“开放”)系统与其环境的能量相互作用达到某个临界值时,微观元素的复杂的非线性合作产生出宏观模式。从哲学上看,所形成的结构的稳定性是由某种非线性和耗散的均衡来保证的。过强的非线性相互作用或耗散作用会使结构遭到破坏。
由于耗散相变的条件是十分普通的,这就使之有了广泛的跨学科应用。物理学中,激光是一个典型的例子。化学的贝洛索夫-札鲍廷斯基(BZ)反应中,当特定的混合在一起的化学物质处于临界值,就出现了浓度环或螺旋卷。各个环波之间的竞争非常清楚地显示出这些现象的非线性,而叠加原理成立时这些环波应该相互穿透,如同光波那样。
非线性的耗散复杂系统的相变由协同学来解释。我们可以更定量的方式说,旧的结构变得不稳定,并由控制参量的改变而被打破。在微观水平上,旧的状态的稳定模是受到不稳定模的支配(哈肯的“役使原理”)。它们决定着描述系统的宏观结构和系统的序参量。相变的种种不同的最终模式,对应于不同的吸引子。种种不同的吸引子可以形象地描述为流体,其速度被逐步加速。在最初的水平上,显示的是均匀平衡态(“不动点”)。在较高速度的水平上,可以观察到两个或两个以上的螺旋,它们是周期的或准周期的吸引子。最后,有序退化成确定论混沌,这是一种复杂系统的分形吸引子。从哲学上看,我希望进一步强调,协同学中物质的微观描述有别于宏观有序状态。于是,协同学的有序概念使我想起赫拉克利特的“逻各斯”或亚里士多德的“形式”,它们在物质的转变过程中产生出自然的有序态。当然,古人在这里用的不是数学描述。
用更数学化一些的语言来说,复杂系统的微观观点是用态矢的演化方程来描述的,方程中每一分量都依赖于空间和时间。这些分量可以代表流体的速度分量,它的温度场,或化学反应中的化学物质的浓度。协同学的役使原理允许我们消除代表着稳定模的自由度。在主要的近似中,相应于这些系统的非线性,演化方程转变成特殊形式,在此出现了模式之间的竞争。不稳定模的主导项的幅度称为序参量。它们的演化方程描述了宏观模式的形成。最后的模式(“吸引子”)通过相变而实现,此过程可以被理解为某种对称破缺。从哲学上看,物质的进化是由赫拉克利特早已提到的对称破缺引起的。
第三章分析“复杂系统和生命的进化”。科学史和哲学史上,人们曾相信“死”物和“生”物之间是界线分明的。亚里士多德把生命解释为一种自组织的力量(隐德来希),它推动着植物和动物朝向其最终形式生长。一个活系统能够靠自己来运动,而一个死系统只可能从外部来推动。生命用目的论来解释,即用指向某种自然目标的非因果力(“生命力”)来解释。18世纪,康德揭示了活系统的自组织不可能用牛顿物理学的机械系统来解释。他在一段著名的话中说,能够解释青草叶片的牛顿还没有出现。19世纪,热力学第二定律描述了封闭系统朝向最大熵状态或无序态的不可逆运动。人们又如何来解释在生命的达尔文进化中的有序的形成呢?波耳兹曼强调,活的有机体是开放的耗散系统,与其环境发生着交换,这并不违背封闭系统的第二定律。但是,在从波耳兹曼到莫诺的统计解释中,生命的出现仅仅是一种意外的事件,是“在宇宙边缘”的局部宇宙涨落。
在复杂系统的框架中,生命的形成不是偶然的,而从耗散自组织意义上讲是必然的和合乎规律的。宇宙中,只有生命出现的条件(例如出现在行星地球上)才可能是意外的。一般地,生物学中将个体发生(有机体的生长)与种系发生(物种的进化)加以区别。在任何一种情形下,我们遇上的都是复杂的耗散系统。这种系统的发展,可以用远离热平衡的相变来解释,即由分子、细胞等等的非线性(微观)相互作用引起的(宏观)序参量的演化得到解释。生物系统(植物、动物等等)的形式用序参量来描述。亚里士多德关于自然目的的目的论,用相变的吸引子来解释。但是,这里不需要任何特殊的“生命力”或“目的力”。从哲学上看,生命的出现可以在非线性因果性和耗散自组织的框架中得到解释,尽管出于启发式的原因,它可能会使用目的论语言来描述。
我要向读者指出,生物大分子的前生物进化已经由曼弗雷德·艾根等人进行了分析和模拟。斯宾塞以复杂性增加为标志的生命进化思想,可以在耗散自组织理论中得到精确化。众所周知,图林分析了有机体数学模型,将其表示成复杂元胞系统。格里斯奇、迈恩哈特等人用关于细胞聚集的演化方程描述了有机体(例如软泥霉)的生长。对于阿米巴,当环境中细胞营养物处于某个临界值,其非线性相互作用引起了如软泥霉的宏观有机体的形成。序参量的演化对应于宏观有机体相变过程中的聚集形式。成熟的多细胞体可以解释为机体生长中的“目标”或(更好的)“吸引子”。
甚至生物群体的生态生长也可以运用协同学概念来说明。生态系统是复杂的耗散系统,包括植物或动物之间以及与其环境之间的相互的非线性代谢作用。两种群体与其营养源的共生,可以用3个耦合的微分方程来描述,爱德华·洛仑兹已经用这种方程描述了气象学中天气的发展。在19世纪,意大利数学家洛特卡和沃尔特拉描述了两个处于生态竞争中的群体的发展。两个复杂群体的非线性相互作用,由两个耦合的捕食者和被捕食者的微分方程来描述。该耦合系统的演化具有一个稳恒的平衡点。演化的吸引子是周期振荡子(极限环)。
复杂系统理论使得我们可以对自然界生态系统的非线性因果作用进行分析。自从工业革命以来,人类社会与自然界的生态循环结合得越来越紧密。但是,线性的传统工业生产模式使复杂的自然平衡受到重大威胁。人们假定自然界中拥有无穷无尽的能源、水源和空气等等,利用它们时也不会干扰自然界的平衡。工业会生产出无穷无尽的物品,而无需考虑如同臭氧洞或废物利用那样的协同效应。生命的进化转化成为了人类社会的进化。
第四章“复杂系统和心-脑的进化”,讨论了也许是最有思辨性的复杂系统的跨学科应用。在哲学史和科学史上,已经提出了多种多样的解决心-身问题的主张。唯物主义哲学家如德谟克利特、拉美特利等人主张,把精神还原为原子的相互作用。唯心主义者如柏拉图、彭罗斯等人则强调,精神是完全独立于物质和大脑的。在笛卡尔、艾克尔斯等人看来,精神和物质是相互作用、独立存在的实体。莱布尼茨信奉一种形而上的精神和物质的平行论,因为它们不可能进行物理性的相互作用。在莱布尼茨看来,精神和物质是在“前定和谐”中存在,如同两个同步的钟表。现代精神哲学家如西尔斯则捍卫一种进化自然主义。西尔斯争辩道,精神以意向性的精神状态为标志,它们是人大脑的生化作用的固有特征,因而不可能由计算机来模拟。
但是,复杂系统理论不可能归结为这些或多或少片面的主张。复杂系统探究方式是一种跨学科的方法论,适用于讨论诸如大脑这样的细胞器官的非线性复杂系统。精神状态的形成(例如模式识别、情感、思想)用大脑集合体的(宏观)序参量的演化来解释,序参量是远离热平衡的学习策略中由神经细胞的非线性(微观)相互作用造成的。具有精神状态的细胞集合体被解释为相变中的吸引子(不动点、周期的、准周期的或混沌的)。
如果大脑被看作一个神经细胞的复杂系统,那么它的动力学也就假定由神经网络的非线性数学来描述。例如,通过与应用于描述物理学、化学和生物学中模式形成的演化方程进行类比,模式识别也就解释成为一种相变。从哲学上看,我们就获得了一种跨学科的研究纲领,由此可以把神经计算的自组织解释为一种具有共同原理的物理学、化学和神经生物学演化的自然结果。正如在模式生成的情形,特定的模式识别(例如一张脸的原型)是用其特征集的序参量来描述的。一旦给出了属于该序参量的部分特征(例如脸的一部分),序参量就会完成其余的特征,使得整个系统以联想记忆方式起作用(例如在给出脸的一部分时重构出所贮存的脸的原型)。按照哈肯的役使原理,所识别的模式的特征相应于模式生成中受役使的子系统。
对于意识、自我意识和意向性的形成,情况又如何呢?在协同学中,我们必须对大脑的外部状态和内部状态进行区分。在感知和识别的外部状态,序参量相应于神经细胞集合体,代表着外部世界的模式。大脑的内部状态只是自参照状态,即只是包括精神状态的精神状态,而不包括外部世界的状态。在传统的语言哲学中,我们说人可以反映他们自己(自反映),也能够将外部世界的状况反映到他们自己的内部情感和意向(意向性)的状态之中。在新近的神经生物学研究中,科学家们推测,意识和自我意识作为自反映的神经实现,其形成取决于“元细胞集合体”产生速率的临界值。“元细胞集合体”即是代表了细胞集合体的细胞集合体,这细胞集合体又代表着细胞集合体,如此等等。这种假说(如果是成功的),只能解释诸如意识的形成特征的结构。当然,细胞集合体的数学演化方程并不能使我们获得与他人获得的感受不同的感受。在消极的意义上,科学是盲目的。但是,它也有积极的意义:个人的主体性得到了保留:非线性动力学的计算和计算机辅助的模拟原则上是有局限性的。
无论如何,复杂系统探究方式解决了一个传统的形而上学之谜。莱布尼茨曾经这样描述这个谜:如果我们把大脑想像为一台如碾磨机那样的大机器,我们可以进入其中的内部机制,我们将发现的只不过是如同嵌齿轮那样的一个个机器元件,而不可能找到什么精神,更不用说什么人的灵魂。当然,在微观水平上,我们只可能把神经元的发展描述为大脑中的脑部件。但是,在宏观水平上,复杂神经系统中的非线性相互作用引起了有一定序参量的细胞集合体的形成,而序参量是不可能用单个脑细胞的状态来验证的。整体并非部分之和。
显然,复杂系统探究方式对于心-身问题提供了解答,它们超越了传统的唯心主义、唯物主义、物理主义、二元论、相互作用论等等解答。对于所谓的自然智能和人工智能之间的区分,重要的是要注意,非线性复杂系统的原理并不取决于人脑的生物化学的作用。在大脑复杂系统是物理和生物进化产物的意义上,人脑是这些原理的一种“自然的”模型。但是,由人的技术生产出其他的(“人工的”)模型也是可能的,尽管它们的实现会遇到技术上和伦理上的限制。
第五章中,我们讨论“复杂系统和人工智能的进化”。在此描述了神经计算机和协同计算机的发展,并与图林机和基于知识的系统进行了比较。在协同计算机中,序参量方程允许一种新的(非霍布)学习方式,它是一种最大限度减少突触数目的策略。与旅晶型的神经计算机(如霍普菲尔德系统)不同,神经元并非阈值元件,而是执行一种简单的代数操作如乘法和加法。除了确定论的均匀性霍普菲尔德网络以外,还有所谓的波耳兹曼机,这是一种非确定论处理元件和分布知识表示的随机网络构造,数学上用能量函数来描述。与霍普菲尔德系统运用霍布学习策略不同,波耳兹曼机倾向于一种后向传播策略(威德劳-霍夫规则),采用具有隐含神经元的多层网络。
一般说,学习算法的目标在于通过自组织来减少大脑的内部世界模型与真实环境之间的信息-理论测量的差距。人们最近对于神经网络领域兴趣的恢复,主要是受到统计力学和非线性动力学技术的成功运用的鼓舞,这些成功运用的领域包括固体物理学、旋晶物理学、化学平行计算机、光学平行计算机以及——在协同计算机的情形——激光系统。另外的原因是,计算资源和技术水平的最新发展,使得对非线性系统进行计算处理越来越可行。从哲学上讲,认识论的传统课题,如感知、想像和认知,都可以在跨学科的复杂系统框架中进行讨论。
复杂系统探究方式的一个重要应用是神经仿生学和医学。人脑不仅是一台作为自然界进化产物的脑计算机,而且也是我们身体的一个中心器官,它需要医学上的治疗、康复和保健。例如,神经手术这个医学分支,专注于保持人的精神的生物载体的健康。神经仿生学的一个基本目标是关注未来的脑-心体的健康。近年来,器官移植中引入了新的诊断手段和技术设施,它们建立在从复杂动力学系统看待大脑所获得的新见解的基础上。因而临床治疗的变化是不可避免的。神经病和心理疾病可以解释成高度敏感的非线性系统中的复杂状态。甚至医学治疗也必须考虑到这个复杂器官的高度敏感性。另一种更为思辨性的新技术是电脑化空间。感知、情感、直觉和幻想可以是人工神经网络的产物吗?虚拟现实已经成为现代文化哲学中的一个关键词。
在经历了从物质、生命、心-脑和人工智能的运动之后,本书的第六章《复杂系统和人类社会的进化》进行了黑格尔式的大综合。在社会科学中,人们通常严格地区分生物进化和人类社会史。原因在于,民族、市场和文化的发展被认为由人的意向性行为所引导,即人的决策是以意向、价值等等为基础的。从微观的角度看,我们当然可以观察到带着其意向、信仰等等的一个个的个体。但是从宏观的角度看,民族、市场和文化的发展就不仅仅是其组成部分之和。我们知道,政治和历史中的单极因果关系是错误的、危险的线性思维方式。对于处理复杂系统甚至包括人文领域这样的复杂系统,协同学表现为一种成功的策略。为了以跨学科方式运用协同学,显然不必将文化史还原成生物进化。与任何还原论的自然主义和物理主义相反,我们承认人类社会的意向性特征。因此,复杂系统探究方式可以是一种沟通自然科学和人文学科、消除其间隔阂的方法,斯诺曾在著名的《两种文化》中批评过这种隔阂。
在复杂系统框架中,人群的行为用(宏观)序参量的演化来解释,(宏观)序参量是由人们或人类的子系统(国家、组织机构等等)的非线性(微观)相互作用引起的。社会的或经济的有序用相变的吸引子来解释。阿伦等人分析了城市区域的生长。从微观的观点看,城市区域的生长中,群体演化在数学上是用耦合的微分方程来描述的,微分方程的项和函数涉及每一地区的能力、经济生产等等。整个系统的宏观发展用计算机辅助作图示意出来,包括了工业化中心、娱乐中心等等的变化,它们是由其中的一个个城市区域的非线性相互作用引起的(例如,交通、通信等等的远近不等带来的优势和劣势)。此协同学模型的一个基本结论是,城市的发展不可能以每个人的个人自由意志来解释。尽管每个区域中的人们的行动都有其个别的意向性、计划性等等,但是全局的发展趋势却是非线性相互作用的结果。
协同学的另一个跨学科应用的例子是维德里希的迁移模型。他区分了社会中微观水平上的个体决策和宏观水平上的动力学集体过程。具有随机涨落的概率性宏观过程用人类社会构型的主方程来描述。一个社会构型中的每一组元都涉及到一个具有特征行为矢量的子群体。社会中迁移的宏观发展可以用计算机辅助作图来示意,其中的混合、聚居、漫游和混合中心的变化,都是由社会子群体的非线性相互作用引起的。在此模型中,人的复杂系统和非人的复杂系统之间的区别是明显的。在微观水平上,人的迁移是意向性的(即受收益考虑引导的)和非线性的(即依赖于个体和集体的相互作用)。协同学的一个主要的结果又是,国家的和国际的迁移效应是不可能用单个的个人自由意志来解释的。我认为,迁移是当代的一个非常重要的课题,揭示了线性的、单极因果性的思维方式是多么的危险。只有良好的愿望而不考虑到个别决策的非线性效应是不够的。线性的思维和行动能激发起全局性的混沌,尽管我们局部的行动带着最良好的愿望。
很遗憾,在经济学中,线性模型仍然处于支配地位。从定性的观点来看,亚当·斯密的自由市场模型已经可以用自组织来解释。斯密强调了,个体的良好的或邪恶的愿望都不是本质性的。与集中化的经济系统相反,供给和需求的平衡,并不由程序控制的中心处理者来指定,而是“看不见的手”(斯密)的结果,即只不过是消费者和生产者的非线性相互作用的结果。经济学家近来对于非线性耗散系统的兴趣,受到了以知识为基础的高技术产业发展的鼓舞,高技术产业具有正反馈效应(即生产增长依赖于技巧的增长,如电子学、计算机工业等等);这与传统的产业具有负反馈效应形成了鲜明的对比(即生产的降低受到资源的限制如煤炭或钢铁)。一般说来,经济过程是非常复杂的,需要非线性耗散模型。回忆一下种种不同的吸引子,从经济循环到财政混乱,它们只可能以消费者和生产者、财经政策、股票市场、失业等等的非线性相互作用引起的协同效应来解释。甚至在管理领域,也讨论了可能的复杂模型,以通过所有层次上的管理和生产的非线性协同来支持创造性和创新。协同学的分析表明,经济过程是自然的生态循环之中的一个环节。正是我们使经济学和社会学非线性复杂系统成为现实这个大的政治意愿,使自然与人类社会面保持平衡。
人们显然已经获得了一些成功地处理非线性复杂系统的策略。我们将讨论一些应用的例子,包括量子物理学、流体动力学、化学和生物学中的,以及经济学、社会学、神经病学和人工智能中的例子。这些自然科学和人类社会中的成功应用背后,原因是什么?复杂系统方式并不归结为某个特定的物理学自然规律,尽管首先从物理学中发现了其数学原理并有了成功的应用(例如激光)。它是一种跨学科的方法论,可以解释复杂系统中通过微观元素的非线性相互作用造成的一定的宏观现象。宏观现象的形式多种多样,可以是光波、流体、云彩、化学波、生物分子、植物、动物、群体、市场和脑细胞集合体,它们都是用序参量来标志的(表1.1)。
表1.1非线性复杂系统的跨学科应用
学科
|
系统
|
元素
|
动力学
|
序参量
|
量子物理学
|
激光
|
原子(光子)
|
相变
|
光波形式
|
流体力学
|
流体
|
分子
|
相变
|
液体形式
|
气象学
|
天气
|
分子
|
相变
|
云彩形式
|
地质学
|
熔岩
|
分子
|
相变
|
六角形(贝纳德元胞)
|
化学
|
BZ-反应
|
分子
|
相变
|
螺旋形环形(化学波)
|
生物学
|
生物分子
|
分子
|
相变
|
结构形式
|
生物学
|
有机体
|
细胞
|
机体生长
|
机体形式(植物,动物)
|
生物学
|
群体
|
有机体
|
群体进化
|
群体形式(相互作用形式)
|
经济学
|
经济系统
|
消费者,生产者等
|
市场机制(即供给和需求)
|
市场形式(相互作用形式)
|
社会学
|
社会
|
人、制度等
|
历史
|
相互作用形式
|
精神病学(心理学)
|
大脑
|
神经元
|
认知(学习)
|
表示外部或内部(“自参照”)状态的神经细胞集合体的形式
|
人工智能(AI)
|
神经(AI)
|
AI神经元
|
学习算法
|
表示外部或内部(“自参照”)状态的神经AI元注集合体的形式
|
从哲学角度看,重要的是要弄明白,序参量不能归结为系统原子、分子、细胞、有机体等等这些复杂的微观水平。它们有时是可测量的量(例如激光的场势),有时是定性的性质(例如模式的几何形式)。然而,序参量并不只是一个理论性的、没有任何现实性的数学概念。实际上,它们代表着真实的宏观现象的性质,诸如场势、社会或经济的力量、情感甚至思想。有谁会否认情感和思想可以改变世界呢?但是,复杂系统探究方式不是一种形而上学的过程本体论。协同学原理(以及其他原理),对于构造自然科学和人文学科中的非线性复杂系统的模型,提供了一种启发性框架。如果这些模型可以数学化,它们的性质可以量化,那么我们就获得了一种经验性模型,它们可能与数据吻合,也可能不吻合。役使原理表现了另一种优点。由于它减少了复杂系统中的大量的自由度,协同学就不仅仅是启发性的、数学化的、经验的和可检验的,而且也是经济的。这也就是说,它满足了著名的奥卡姆剃刀原理,这一原理告诉我们除掉多余的实体。
我们的探究方式表明,物理的、社会的和精神的实在都是非线性的和复杂的。协同认识论的这个基本结论要求我们,注意我们的行为的严重后果。正如我们所强调的,在一个非线性的复杂的现实中,线性思维是危险的。作为一个例子,我们必须记住,我们需要的是一个生态学和经济学之间有着良好均衡的复杂系统。我们的医生和心理学家,必须学会把人看作复杂的精神和肉体的非线性体。线性思维可能会作出不正确的诊断。医疗中的局部的、孤立的和“线性的”治疗方法,可能会引起负面的协同效应。在政治和历史中,我们必须牢记,单极因果性可能会导致教条主义、偏执主义和空想主义。随着人类的生态、经济和政治问题已经成为全球的、复杂的和非线性的问题,传统的个体责任的概念也变得可疑了。我们需要新的集体行为模型,它们建立在我们的一个个的个别成员和种种不同见解的基础之上。简言之,复杂系统探究方式需要有新的认识论和伦理学结论。最后,它也提供了一个机会,使我们去防止非线性复杂世界的混沌,去利用协同效应的创造性可能。 |